Rbridges: Transparent Routing

Radia Perlman
radia.perlman@sun.com
Problems with Bridges

• Routes are not optimal (spanning tree)
 – STA cuts off redundant paths
 – If A and B are on opposite side of path, they have to take long detour path

• Temporary loops really dangerous
 – no hop count in header
 – proliferation of copies during loops
 – So, should be conservative in transition
Path from a to c
Why loops are a disaster

- No hop count
- Exponential proliferation

B1 B2 B3
Why bridges are slow to start forwarding

• Temporary loops might cause meltdown
• Can’t (except in certain special cases, like a port to an endnode) know if turning on a link might cause temporary loop
• Simple solution: wait before turning on link, so other bridges can turn off links first
• People want instant failover (but they don’t want meltdowns)
Bridge meltdowns

• They do occur (a Boston hospital)
• Lack of receipt of spanning tree msgs tells bridge to turn on link
• So if too much traffic causes spanning tree messages to get lost…
 – loops
 – exponential proliferation of looping packets
Why are there still bridges?

• Why not just use routers?
 – Bridges plug-and-play
 – Endnode addresses can be per-campus

• IP routes to links, not endnodes
 – So IP addresses are per-link
 – Need to configure routers
 – Need to change endnode address if change links
True “level 1” routing

• CLNP addresses had two parts
 – “area” (14 bytes…)
 – node (6 bytes)

• An area was a whole multi-link campus

• Two levels of routing
 – level 1: routes to exact node ID within area
 – level 2: longest matching prefix of “area”
CLNP areas

one prefix
CLNP level 1 routing

- Depended on protocol “ES-IS”
 - endnodes periodically multicast presence to rtrs
 - (also, rtrs periodically multicast to endnodes)
- Rtrs tell each other, within area, location of all endnodes in area
- IS-IS originally designed for CLNP. “Level 2” was to longest prefix. “Level 1” was to exact match of bottom 6 bytes.
“Level 1 routing” with IP

- IP has never had true level 1 routing
- Each link has a prefix
- Multilink node has two addresses
- Move to new link requires new address
- Bridging is used to create a campus in which all nodes share the same prefix
- But bridging isn’t as good as routing
What we’d like, part 1: replace bridging with Rbridging

• keep transparency to endnodes
• keep plug-and-play
• have best paths
• eliminate problems with temporary loops
 – have a hop count
 – don’t exponentially proliferate packets
• then can converge optimistically (like rtrs)
What we’d like, part 2: true “level 1 routing” for IP

- allow plug-and-play campus sharing a prefix
- allow optimal routing
- don’t require any endnode changes (e.g., implement ES-IS)
- work for IPv4 and IPv6
Rbridges

- Compatible with today’s bridges and routers
- Like routers, terminate bridged LAN
- Like bridges, glue LANs together to create one IP subnet (or for other protocols, a broadcast domain)
- Like routers, optimal paths, fast convergence, no meltdowns
- Like bridges, plug-and-play
Rbridging layer 2

- Link state protocol among Rbridges (so know how to route to other Rbridges)
- Like bridges, learn location of endnodes from receiving data traffic
- But since traffic on optimal paths, need to distinguish originating traffic from transit
- So encapsulate packet to destination Rbridge
Encapsulation Header

<table>
<thead>
<tr>
<th>S=Xmitting Rbridge</th>
<th>D=Receiving Rbridge</th>
<th>hop count</th>
<th>original pkt (including L2 hdr)</th>
</tr>
</thead>
</table>

- Outer L2 hdr must not confuse bridges
- So it’s just like it would be if the Rbridges were routers
- Need special layer 2 destination address
 - for unknown or multicast layer 2 destinations
 - can be L2 multicast, or any L2 address provided it never gets used as a source address
Rbridges and Bridges

Seems like:

Actually can be:
Endnode Learning

• On shared link, only one bridge (DR) can learn and decapsulate onto link
 – otherwise, a “naked” packet will look like the source is on that link
 – have election to choose which Rbridge

• When DR sees naked pkt from S, announces S in its link state info to other Rbridges
Pkt Forwarding

• If D known: encapsulate and forward towards D

• Else, send to “destination=flood”, meaning send on spanning tree
 – calculated from LS info, not sep protocol
 – each DR decapsulates
Rbridging IP

• Rbridging at layer 2 will do it
• Optimization: locally answer ARPs
 – learn (layer 3, layer 2)
 – pass that in link state info
• Another optimization for IP: shorter endnode cache timer (since can ping)
Alternative for IP

- Some router hardware doesn’t like to learn on data packets (“fast path”)
- Encapsulation not too desirable
- For IP packets, we can avoid both the above
- Forward like IP, using IP hdr
 - learn from ARP replies
 - decrement hop count in IP hdr
 - L2 hdr: Rbridge to Rbridge
Avoiding encapsulation for IP

• On-campus IP destination
 – forward based on IP header
 – learn from ARP replies
 – if destination unknown, flood ARP query

• Off-campus IP destination
 – forward based on layer 2 destination
Conclusions

• Looks to routers like a bridge
 – invisible, plug-and-play
• Looks to bridges like routers
 – terminates spanning tree, broadcast domain
Conclusions, cont’d

• Much better replacement for bridging
 – optimal paths
 – still plug and play and transparent
 – fast convergence
 – no meltdowns

• For IP
 – allows plug-and-play single-prefix campus