
Rbridges: Transparent Routing

Radia Perlman
Sun Microsystems Laboratories

radia.perlman@sun.com

Abstract— This paper describes a method of interconnecting
links that combines the advantages of bridging and routing. The
basic design is a replacement for a transparent bridge and makes
no assumption about higher layer protocols. It involves creating
an infrastructure of switches (which we call Rbridges, for
“routing bridges”) in which packets are routed, although, as with
bridges, layer 2 endnode location is learned through receipt of
data packets. It avoids the disadvantages of bridges, since packets
within the infrastructure need not be confined to a spanning tree,
and packets are protected with a hop count and not proliferated
while in transit, so there is no need for any artificial startup delay
on ports to avoid temporary loops. This allows IP nodes to travel
within a multi-link campus without changing IP addresses. The
paper introduces further optimizations for IP, such as avoiding
flooding ARP messages through the infrastructure, and (for IP
nodes), allowing Rbridges to avoid learning on data packets.

Index terms-- system design

I. INTRODUCTION
Bridges can transparently connect many physical links into

what appears to IP (or a layer 2 protocol) to be a single LAN.
However, this transparency is bought at a price. It requires the
topology on which traffic is forwarded to be a tree. This causes
traffic concentration on links that were chosen for the spanning
tree. It also causes suboptimal paths.

In addition, bridge forwarding can be dangerous. There is
no hop count in the header, and worse yet, bridges forward
onto multiple ports (when the location of the destination is
unknown), and multiple bridges might choose to forward a
packet seen on a link. This causes exponential proliferation of
packets. As a result, bridges need to be conservative about
forwarding onto new links, in order to avoid temporary loops.
The spanning tree as originally designed [9] used a timer to
avoid temporary loops. Since then various optimizations have
been proposed, such as making a special case of ports for
which the neighbor is known to be an endnode (rather than
another switch). If the assumption is correct that the neighbor
is an endnode, there is no danger of loops by immediately
starting to forward on that port. Also, [12] introduces other
optimizations to avoid the delay in some cases.

Given the possibility of exponential proliferation during
temporary loops, the spanning tree algorithm can become
unstable, as reported recently in an event at a hospital in Boston
[1]. Attempts to make it less conservative in order to forward
more quickly are likely to increase the number of such
incidents. In a distributed algorithm, there is no way, based on
totally local information, for a bridge to know it is safe to start

forwarding onto a new link. And even if such an algorithm
were to be devised, a component such as a repeater can cause a
loop which bridges would not be able to prevent.

So why not simply use routing? The IP protocol (v4) is
pretty much universal. However, it is not universal. There are
other layer 3 protocols that are in use, and there are some
protocols (such as IS-IS [7], or LAT) that work directly over
layer 2.

Even if the IP protocol were universal, however, it has a
disadvantage. IP routes only to links. Each link is assigned an
address prefix, and all IP nodes on that link must have an IP
address with that prefix, and any node not on that link must
have an IP address that does not start with that prefix. That
means that a node that has multiple links must have multiple
addresses, and a node that moves from one link to another must
change its address.

Note that for the purposes of this paper, IPv6 is sufficiently
similar to IPv4 that throughout this paper "IP" is intended to
mean both IPv4 and IPv6. Differences such as the use of the
"neighbor discovery" protocol for IPv6 vs. ARP for IPv4 are
straightforward translations of functionality.

Another disadvantage of IP routing is that it requires
configuration. It has improved over the years with the addition
of protocols such as DHCP [3]. However, the routers need to
be configured with prefixes for the links. There have been
proposals for having routers within a campus, given a prefix,
automatically subdivide the prefix into link-specific prefixes,
so that each link within a “campus” would automatically have
its own unique prefix within the shorter campus-wide prefix.
This approach avoids configuration of the routers, but still has
disadvantages:

• a node that moves within the campus must change its
address

• a node that has attachments to multiple links must have
multiple addresses

• it is wasteful of IP addresses, since it is impractical to
make sure that every link is fully populated (makes full
use of its prefix).

CLNP [5] is a protocol similar to IP, but unlike IP, there is
no link-specific prefix. Instead there is the concept of “level 1
routing” within an area. An area may contain many links. All
nodes within the area share the same prefix. A node with
multiple links within the area can have a single layer 3 address,
and a node that moves within the area need not change its layer

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

3 address. CLNP could do this because all CLNP endnodes
implemented a protocol known as ES-IS [6]. The ES-IS
protocol has endnodes periodically announce themselves, to an
address listened to by the routers, so that all the routers on the
link know which endnodes are on that link, and can detect
(based on no longer receiving ES Hello messages) when an
endnode has gone down or moved.

Because of the ES-IS protocol, an area can have an
arbitrary physical topology and routers can route to endnodes
using a shortest path algorithm.

IP endnodes cannot be relied upon to do any such
announcements.

The Rbridge design presented in this paper accomplishes
several things:

• it coexists with standard bridges, so that a bridged
campus can be upgraded slowly, by replacing bridges
one at a time with Rbridges. The more Rbridges, the
more advantages of Rbridges will be gained, such as
more optimal use of the topology.

• it allows interconnection of IP nodes within a campus
with a result similar to a CLNP area, but without
relying on IP endnodes to do anything new

• it bridges layer 2 protocols (where “bridges” means
transparently interconnects), while being able to
maintain shortest paths and safe routing within the
campus

• as a result of working at layer 2, and making no
assumptions about higher layers, it works for any layer
3 protocol

• it makes no assumptions about physical topology. Not
only is the interswitch topology unconstrained, but
interswitch links may be shared media, with endnodes
residing on these links.

• In many cases Rbridges will support dissimilar layer 2
technologies. This paper will describe what
mechanisms will be needed, and what cases will not
work.

The paper also presents variations that drop various
assumptions, such as the functional requirement of supporting
anything other than IP, or the assumption that endnodes might
reside on shared media interswitch links.

Dropping the requirement to support anything other than IP
avoids the necessity for the Rbridge to learn station location
from data packets, and avoids the necessity of encapsulation,
two Rbridge requirements that present implementation
difficulties for some switch hardware.

Note, though, that the design optimized for IP can coexist
with a design that handles non-IP packets, much like brouters
could route some protocols and bridge the others.

II. OTHER WORK
Some approaches to high-speed interconnection not only

require loop-free routing, but deadlock-free routing. Deadlock-

free routing not only ensures that each path is individually
loop-free, but that paths do not interact in a way that would
ever create deadlocks. Autonet [11] is such a system.
Deadlock-free routing has the disadvantage that it constrains
paths, but the clever algorithm in Autonet allows near-optimal
paths. However, Autonet requires globally correct routes at all
times. This is accomplished by freezing the network after a
topology change, and discarding all data until the network is
known to have safely converged to the new topology.

Anther approach that requires freezing the network until it
has converged after a topology change is SmartBridge [10].
SmartBridge additionally requires forwarding from each source
to be along a spanning tree rooted at that source (and therefore
this design does not allow load splitting).

The Rbridge concept does not need to be careful to avoid
temporary inconsistencies while the topology is changing (due,
among other things, to including a hop count in the interswitch
header). This avoids the necessity to throw away data during
topology transition times, and allows faster convergence, since
during a topology change some routes might still be correct,
and there is no need to artificially throw away packets for those
routes. And the network will converge more quickly than
knowledge that the network has converged, so even routes
affected by the topology change will start forwarding correctly
more quickly in the Rbridge scheme.

An approach similar to the Rbridge design, but with stricter
topological assumptions (no shared medium links between
switches) is in [4]. It specifically deals with layer 2 forwarding,
and makes no optimizations for IP.

III. BASIC RBRIDGE DESIGN
The basic design of an Rbridge consists of several parts:

• Within a campus, Rbridges execute a link state
protocol such as IS-IS, so that all Rbridges know a path
to each other Rbridge. IS-IS is a particularly good
choice because of its flexible encoding that allows
including new information (such as layer 2 addresses
of reachable endnodes).

• On each link, a single Rbridge is elected DR
(Designated Rbridge). That is the only Rbridge on that
link that is allowed to learn the membership of
endnodes on that link, and is the only Rbridge allowed
to forward traffic onto that link that is destined for that
link.

• The DR, like a bridge, learns which endnodes are
located on its link by observing the source address of
packets that have originated on that link.

• The Rbridge distributes the addresses of endnodes on
its link in the link state protocol. This enables all
Rbridges to know which Rbridge is the appropriate
destination Rbridge for each endnode.

• The egress Rbridge from a link (usually the DR, but an
optimization would allow another Rbridge to forward a
packet off the link) encapsulates the packet with an
additional header that contains, at the minimum, a hop

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

count, and preferably also a destination Rbridge
identifier.

• Packets in transit are distinguished from originating
packets, since they contain the encapsulation header.
Therefore, there is no confusion between packets
originating on a link and packets transiting that link;
the DR will know not to assume that the source of a
transit packet does not reside on the link from which
the packet was received.

• Rbridges additionally calculate a spanning tree. This is
for the purpose of delivering layer 2 multicast packets,
and packets to unknown destinations. There is no need
to implement an additional protocol in order to
calculate a spanning tree, given that the Rbridges have
a link state database.

• When packets are to be sent through the spanning tree,
the encapsulation header specifies a value such as
destination Rbridge ID=0. The packet is forwarded
through the spanning tree and each DR (in addition to
forwarding it through the spanning tree), removes the
encapsulation header in order to forward the packet
onto the DR's link.

This design can be thought of as performing the

functionality of a bridge to endnodes, i.e., transparently
interconnecting links, but it avoids the disadvantages of
bridges. Since the transit packets are routed, with a header that
contains a hop count, it is safe to have temporary loops.
Packets with a specified destination Rbridge will not proliferate
(as bridged packets would) during a temporary loop, and they
will quickly be discarded due to the hop count. The hop count
can even be set to be exact, unlike a hop count written into the
header by an endnode, since the Rbridge can calculate the
number of hops necessary to reach the destination. So, ignoring
for the moment packets that must be sent through the spanning
tree, Rbridge routing enjoys the following advantages over
802-style bridging:

• packets travel via an optimal path

• during temporary loops, packets do not proliferate

• packets have a hop count

• temporary loops are not a problem, so routing changes
can be made instantaneously based on local
information, safely.

A. The encapsulation header
The goals of the encapsulation header are:

• Allow Rbridges to differentiate packets originated by
an endnode from transit packets

• Include a hop count

• Be compatible with bridges on the path between
Rbridges

 If we want bridges to coexist with Rbridges, so that a
bridge might be on the path between two Rbridges, the packet

must still contain what looks like an ordinary layer 2 header, so
that bridges will be able to forward it.

The way to accomplish this is to use something in the outer
layer 2 header that can be recognized by Rbridges as an
encapsulated packet. The most straightforward would be a new
protocol type (or SAP), that would mean "Rbridged
encapsulated packet", which we'll call the Rbtype protocol type
(or SAP). An Rbridged transit packet consists of an otherwise
normal layer 2 header with protocol type Rbtype, followed by
the encapsulation information including the hop count,
followed by the original packet as transmitted by the source.
When forwarding to the destination, the encapsulation header is
removed, so that the goal of transparency to endnodes is
accomplished. The destination will see the packet as
transmitted by the source.

The layer 2 source and destination in the outer header
should be the transmitting and receiving Rbridge. It is safe for
bridges to learn layer 2 addresses within the bridged spanning
tree terminated by Rbridges, since that mini-LAN is a normal
bridged topology in which packets travel on a spanning tree. It
would not be safe for the layer 2 source address to be the
original source endnode's layer 2 address, because packets are
not routed along a spanning tree throughout the campus, and
therefore are injected into the mini-LAN from different
directions. Therefore, bridges in a mini-LAN would see
packets from a MAC address appear from different directions,
if a MAC address outside the mini-LAN appears as a source in
the outer header. This will confuse bridges about that MAC's
location, and they may filter packets destined for that address.

The addresses in the outer header must be MAC addresses
local to the mini-LAN, to avoid this problem. This outer header
is rewritten on an Rbridge-hop by Rbridge-hop basis.

After the outer header is additional information of use to
Rbridges. This includes the hop count, which would be
decremented on each Rbridge hop. And although theoretically
it might be avoided, it is desirable to also include the
destination Rbridge address, or in the case of the destination's
location being unknown, an indicator (such as destination
Rbridge address specified as "0") that the packet is to be sent
through a spanning tree.

In theory it is not necessary to specify the destination
Rbridge, since all Rbridges would know how to forward to the
known layer 2 destinations within the campus. However, it is
safer to include it, to avoid loops in transition cases where
some Rbridges know the destination Rbridge and others don't,
and think the packet must be flooded, or some Rbridges
disagree about which destination Rbridge owns the destination.
This would not be too bad, though, because there is the hop
count.

Another possibility for avoiding inclusion of the destination
Rbridge is to include enough information to distinguish flooded
packets from packets to presumed known destinations. This
could be done by using a second reserved protocol type, say
Rbflood.

The original packet is preserved after the encapsulation
header so that the packet can be received transparently by the

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

destination, without evidence of it having been handled by
Rbridges.

B. Temporary Loops
1) Caused by repeater or bridge

If a component such as a repeater or bridge came up, it is

possible that two links become merged. This could result in
there temporarily being two DRs on a link. A DR will not be
able to distinguish a packet from remote source S that has been
decapsulated and injected by the other DR, from a packet
originated by S. This will cause the DRs' learning to be faulty,
and might introduce loops that are not protected by the hop
count (because the hop count is removed when a DR
decapsulates a packet onto the link).

This is likely to be a rare event, and more quickly detected
and corrected because it is link-local. It will take less time for
link-specific knowledge to converge than global knowledge,
which is required for the bridge spanning tree algorithm to
converge.

2) Flooded Packets

Some packets need to be flooded through the Rbridged
campus along a spanning tree. Packets that need to be flooded
are packets for destinations whose location is unknown, or
packets with layer 2 multicast addresses. Just as unicast routing
can have temporary loops, since a distributed algorithm cannot
have all nodes instantaneously switch to a new topology, the
spanning tree might temporarily have loops. With unicast
routing loops, packets will not proliferate. With a spanning tree
loop, packets will be duplicated.

However, the Rbridge spanning tree is far less dangerous
than the 802-bridge spanning tree, because the encapsulation
header contains a hop count. The Rbridge that injects the
spanning tree packet into the Rbridge cloud can calculate the
minimal hop count necessary for the packet. Additionally, for
each port, the Rbridge can calculate a different hop count (in
case leaves on one port are further away than leaves on another
port).

Because of the hop count, spanning tree loops will, in
practice, be unlikely to cause much harm. However, Rbridges
can add additional conservative measures to prevent even the
limited proliferation. As with regular bridges, they can impose
a timer before starting to forward flooded packets onto new
links. And given that they have a link state database, they can
even calculate whether forwarding flooded packets onto a new
link might cause a temporary loop.

Note that this section is only concerned with messages that
must be flooded. Messages that are directed to a known
destination location will not have any danger of being
proliferated during temporary loops.

So in all cases Rbridges are far safer than regular bridges.
They are not, however, as safe as CLNP level 1 routers, since
CLNP level 1 routers would never need to flood packets to
unknown destinations. But Rbridges work without requiring
the ES-IS protocol, which only exists for CLNP.

IV. RBRIDGING IP

The basic design of the Rbridge, presented in section 1, can
bridge layer 2 packets, but using optimal paths within the
campus. If this is all they did, it would support IP. The campus
would appear to IP to be a single LAN. However, there is one
case that would not work. If the Rbridge only used layer 2
addresses, it would fail to interconnect two IP nodes within the
campus if they resided on dissimilar layer 2 links, for instance
ones with dissimilar addresses.

A. The Dissimilar Layer 2 Address Issue
Suppose source IP node S resides on a link with a different

layer 2 address structure than destination IP node D. Since the
Rbridged campus appears to be a single IP subnet, S will
assume D is a neighbor, and issue an ARP. Unfortunately, the
layer 2 address in D's reply will not be understandable to S, and
not be expressible in the layer 2 header when S attempts to
forward to B.

To support this case (S and D are IP nodes residing on links
with incompatible layer 2 addresses), Rbridges reply to ARP
queries, if necessary, with the layer 2 address of an Rbridge
(see next section).

B. Handling ARPs

Let's say that source IP node S is on a link with DR R1, and

target node D is on a link with DR R2. The goal is that when S
does an ARP request for D, if the Rbridges already have
learned about D, that R1 can reply with an ARP request to S,
informing S of D's layer 2 address, without needing to flood the
ARP request to other links.

We'd also like to support the case where S and D have
incompatible layer 2 addresses. In this case R1 will reply to the
ARP request with R1's layer 2 address.

How do the Rbridges learn the ARP information?

Let's assume that S wishes to speak to D. S issues an ARP
request. S's DR, R1, replaces the source S in the ARP query
with its own address, and remembers (S,D) so that, when it
receives the ARP reply from D, it sends an ARP reply to S.

Each Rbridge R2, in addition to forwarding the flooded
ARP request through the spanning tree, sends an ARP query on
its own LAN, with itself (R2) as source, remembering that if it
receives a reply from D it must send an ARP reply to R1.

When R2 (the DR on D's link) receives an ARP reply ("my
layer 2 address is d") from D, R2 sends an ARP reply to R1,
and also reports ownership of (D,d) in its link state information.
The other Rbridges will now know the location of IP
destination D, and the associated layer 2 address d.

To avoid a denial of service attack by having S issue too
many ARP queries (which result in flooded packets and a lot of
processing by Rbridges), the R1 will remember recent ARP

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

queries, and refuse to issue another ARP query for D for some
time.

If a second node, S2, on R1's link, issues an ARP query for
D between the time S issued its query and D's reply is returned,
R1 does not flood an ARP query. Instead, R1 remembers that
an ARP reply from D (triggered by S's ARP query) should be
sent to both S and S2.

In the case where D's layer 2 address is incompatible with
the querying node S, S's DR (R1) replies to the ARP with R1's
layer 2 address.

This design has the following properties:

• ARP queries will not need to be flooded once the
Rbridges learn the location of the target IP node.

• IP will work even if the source and destination within
the campus reside on links with incompatible layer 2
address types.

So, when an IP source emits an ARP, it will either be told
the true layer 2 address of the destination, or the layer 2 address
of its own Rbridge, depending on whether the destination's
layer 2 address is compatible with the source's layer 2 address.

It might be conceptually simpler to have the Rbridge
always respond to an ARP query with its own layer 2 address.
The reason for using the destination's layer 2 address when
possible (when the layer 2 address is compatible) is so that the
source IP node's ARP cache will not need to change when the
local Rbridge goes down and a different DR is elected.

An alternative design could use a logical layer 2 address for
the Rbridge, say X. In this alternate design all IP endnode ARP
caches would indicate X as the layer 2 address of all
destinations.

There might be true bridges mixed in with the Rbridges
(and transparent to the Rbridges, just as bridges are transparent
to routers). Therefore, X must not be used as a source address,
so that its location will not be learned by bridges.

The only disadvantage of this approach is that all packets to
X would need to be flooded (within the very small spanning
tree created by true bridges on the link between Rbridges).

Using the destination's true layer 2 address, when possible,
avoids this slight suboptimality.

In the case of an endnode directly connected to an Rbridge
port with a point-to-point links, none of these disadvantages
apply, and there is no disadvantage to having the Rbridge
always respond to ARP requests from S with the Rbridge's
layer 2 address.

One other issue is a timing issue. It is possible that S will
receive the ARP reply before R2's link state information has
propagated. This case would be handled by a pure Rbridge (one
that forwards based solely on layer 2 addresses) like a packet to
an unknown destination; the packet will be flooded. For
Rbridges forwarding IP packets based on the IP header (see
section VI), this would cause the Rbridge that does not know
the (IP, layer 2) binding to issue an ARP. It could store the data

packet until the ARP reply was received, or flood the packet, or
drop the packet.

C. Prompt Dead-Node Detection for IP

Rbridges can take advantage of the properties of IP in order

to detect in a prompt manner when an IP node has moved or
has died. With layer 2, there is no protocol in which a node is
required to answer. However, with IP, if the DR knows that
(D,d) resides on its LAN, the DR can periodically issue ARP
queries for D, to reassure itself that D still resides on its LAN.

D. Optimizing the path

If the DR is always the egress and ingress point for the link,

it is possible for packets to be two hops suboptimal. Given a
particular source and destination, the ingress DR and the egress
DR might each be one-hop suboptimal.

This suboptimality would only occur on shared media.
Most topologies today really consist of switches and point-to-
point links. If all the switches were Rbridges, and all links pt-
to-pt, then there would be no such suboptimality.

However, if there are shared links (or switched links with
the switches being bridges, so the link would appear to the
Rbridge as if it were a shared link), there can be up to a 2-hop
suboptimality.

The first hop's suboptimality can be avoided by having the
Rbridges on the link implement a careful algorithm in which
they calculate, for each destination, which of them is the
optimal Rbridge for handling the packet. This can be done by
calculating a Dijkstra tree with the link as the Root, and with a
deterministic tie-breaker.

The suboptimality at the destination cannot be avoided,
since it would be dangerous for any Rbridge other than the DR
to inject a decapsulated packet onto the link. The DR would
not be able to distinguish that from a packet that originated on
that link, and the DR would falsely assume the source address
in the packet resided on that link.

There is another form of route suboptimality. In IP, there
might be several routers on the link, and endnodes on the link
would choose a router, essentially at random, for forwarding
packets to destinations that are not on that IP subnet (that do
not share the same campus-wide prefix as the source IP node).
IP already has the mechanism, if a router forwards a packet
onto the same link from which it was received, for the router to
send a Redirect message. This will avoid many cases of
suboptimality.

E. What an Rbridge cannot do

There are some cases that an Rbridge cannot support:

• If there are links with incompatible layer 2 address
formats, then an Rbridge would not be able to

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

interconnect nodes on those two links unless those
nodes were speaking IP.

• If the links have different packet sizes, an Rbridge
would not be able to forward packets that are too large.

The first issue (incompatible layer 2 address formats) could
in theory be supported if the addresses could be translated. Any
two technologies that can be bridged can be Rbridged.

Rbridges could support interconnection within the campus
of disparate layer 2 technologies provided that the source S and
the endnode D resided on compatible link types, because the
Rbridge encapsulates the packet and can send it to the
destination Rbridge. Fragmentation and reassembly could, in
theory, be supported by the encapsulation header.

F. Traffic Engineering

Rbridges are really routers, and therefore can do any sort of

routing that routers do. In some networks, it is desirable to use
MPLS in order to create special routing, for instance, to allow
certain customers to have paths that have certain service
guarantees. This is not incompatible with the Rbridge concept.

V. LESS GENERAL RBRIDGES
In this section we drop some of the generality of the

Rbridge, and see what advantages it can give.

A. Transit links switch-switch only
If we assume that endnodes only exist on leaf links, and

switches are aware of which ports are endnode ports, then there
is no necessity to restrict endnode location learning. Each
Rbridge is allowed to learn station locations for each of its
ports on which an endnode might reside. We avoid the one-hop
suboptimality trivially since there is only one Rbridge on each
endnode link.

If we are really sure that an interswitch link will never be
mistaken for an endnode link, then encapsulation would not be
required for Rbridge learning. However, the encapsulation
header includes a hop count, making forwarding during
temporary loops safer. (Note that even without the hop count,
Rbridge forwarding of packets for known destinations is safer
than bridge forwarding, since Rbridges, like routers, will
forward only in one direction.) However, for Rbridge flooded
packets, without the encapsulation header, Rbridge forwarding
would be as dangerous as bridge flooding.

VI. IP-SPECIALIZED RBRIDGE
Two requirements of the Rbridge design presented in the

rest of the paper are implementation challenges for some
switch hardware. These requirements are:

• The necessity to learn when forwarding data packets

• The necessity to encapsulate and decapsulate packets

These requirements can be avoided by dropping the goal of
supporting anything other than IP. In this section we will
assume all packets are IP packets.

A. Avoiding Encapsulation
There are three reasons for the encapsulation header: to

have a hop count for safety, to distinguish transit packets from
endnode-originated packets, and to distinguish packets to be
flooded from those to known destinations.

Note that we will assume that IP packets also contain a
layer 2 header. What we are avoiding is the use of an
additional layer 2 header.

1) Hop Count

We will not need the encapsulation header for carrying a
hop count, since the IP header contains a hop count. Rbridges
can decrement the hop count in the IP header.

Some ISP customers consider an apparently small hop
count across an ISP as superior service, and having Rbridges
decrement the IP header's hop count would mean that the
customers would see the Rbridge hops as IP hops.

One could argue (and be quite correct), that this is a
completely false assumption on the part of the customer. An
Rbridge hop (or a bridged hop) is no better than a router hop.
Better service should be measured by metrics such as delay,
bandwidth, and reliability, not by perceived numbers of hops.
However, it is often politic to give the customers what they
want rather than argue with them. So having Rbridges
decrement the IP header hop count might be perceived as a
disadvantage with some customers.

2) Transit Packets

Since we are assuming IP packets, it is not necessary for the
original layer 2 header to preserved. Therefore, any information
necessary for Rbridge forwarding can be carried in the layer 2
header.

To distinguish transit packets, we can replace the protocol
type (which would indicate IP) by a protocol type indicating
that it is an Rbridged transit IP packet.

The layer 2 source and destination should be replaced, at
each hop, by the transmitting and receiving Rbridge on that
Rbridge hop.

Although this might appear to be as much work as
encapsulation, this is what routers do (rewrite the layer 2
header on each hop). But it avoids the encapsulation issues of
requiring an additional layer 2 header, which might violate the
maximum packet size.

At the final hop, the final Rbridge replaces the protocol
type to indicate to the destination that it is an IP packet.

3) Flooded packets

As before, flooded packets can be distinguished by using a
different reserved protocol type.

B. Avoiding Data Packet Learning
Some switch hardware is optimized for fast forwarding of

data packets, and it is not possible for it to do anything other

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

than forward. In particular, it cannot learn source addresses
from data packets.

This form of switch is, of course, only used as a router,
since bridges must learn based on data packets. But this
requirement of bridges is because it is not possible to assume
any sort of protocol by the endnodes.

If, however, we assume that all endnodes are only issuing
IP packets, or associated control packets (such as ARP
packets), then we can design an Rbridge that does need to learn
from data packets.

If Rbridges will not learn IP destinations based on data
packets, then they must learn them through ARP replies or link
state information.

1) D unknown by endnodes and Rbridges

The description of how ARP requests and replies are
handled is in section IV.B. The ARP requests and replies can
be handled by the control plane.

Let's assume that destination endnode D is unknown.
Source S wishes to speak to D. S issues an ARP request. The
ARP request is not a data packet, so it can be dealt with in the
slow path (the control plane). The first Rbridge, R1, replaces
the protocol type with a protocol type indicating "flooded
ARP", replaces the source S with its own address, and
remembers that, when it receives the reply from D, it must send
an ARP reply to S.

Flooded ARPs can also be handled by the control plane
because they can be recognized based on the protocol type.
Each Rbridge R2, in addition to forwarding the flooded ARP
request through the spanning tree, sends an ARP query on its
own LAN, with itself (R2) as source, remembering that if it
receives a reply from D it must send an ARP reply to R1.

When an ARP reply is received by D, D will send the ARP
reply to R2. Then R2 sends an ARP reply to R1, and also
reports ownership of IP destination D, and associated layer 2
address, in its link state information. The other Rbridges will
now quickly learn the location of IP destination D, and the
associated layer 2 address (so they can respond locally to
ARPs).

2) D known by Rbridges, not by S

In this case, when source endnode S wants to talk to D, S
will issue an ARP query. The first Rbridge, R1, has learned,
based on link state information issued by R2, where D resides,
and also what its layer 2 address is. R2 then does not forward
the ARP reply, and instead answers with an ARP reply on
behalf of D.

3) D known by S and not by Rbridges

Endnode S might know D's layer 2 address, and yet D
might be unknown to the Rbridges. This might occur because
S's ARP cache might have a longer retention time than Rbridge
caches. Or maybe D's Rbridge has been restarted and D is no
longer included in its link state information.

So in this case an Rbridge will see a packet for an unknown
IP destination address (but within the campus Rbridged prefix).
Most likely this will be the first Rbridge. However, in a
transition case where link state information has partially
propagated, it might be a transit Rbridge. But the Rbridge will
behave the same way in either case.

The Rbridge will drop the unknown IP destination packet,
and instead issue an ARP query, with itself as source. This will
cause a flooded ARP query, with each Rbridge issuing an ARP
query on its own link. The Rbridge on D's link will receive an
ARP reply, and inform the other Rbridges, through the link
state flooding.

To avoid causing a lot of flooded ARP messages, Rbridges
should remember recent unknown IP destinations that have
caused an ARP flood, and not issue another one for some
amount of time.

VII. SUMMARY

The Rbridge design achieves the transparency of bridging

without the disadvantages. It achieves the ability to create a
campus that looks like a single link.

The campus can include links with different layer 2
technologies. An Rbridge would not be able to allow two nodes
to speak at layer 2, if they reside on incompatible link types;
however, the Rbridge would enable those nodes to
communicate if the nodes were speaking IP.

Rbridges have great advantages over bridging. They allow
optimal paths and path splitting. They need not be conservative
about creating temporary loops because packets do not
proliferate, and there is a hop count. The hop count with
Rbridges is set by the source Rbridge, which is armed with link
state information, so that the source Rbridge can calculate the
minimum necessary hop count. This means that during
temporary loops unicast packets (packets to known
destinations) will be removed more quickly than packets in a
traditional layer 3 network.

For flooded packets (layer 2 multicast or packets to
unknown destinations), Rbridges, like regular bridges, may
duplicate packets during temporary loops. However, with
Rbridges there is a hop count, the hop count can be set to be the
minimum necessary, and additionally the Rbridge can use
global information to make conservative temporary loop-
avoidance decisions, so its loop-avoidance behavior will be
more timely and accurate than anything a true bridge could do.

For IP packets, the Rbridge has the additional advantage
that ARP packets need not be flooded, and instead can usually
be answered by the source Rbridge. Additionally, the location
of IP endnodes can be kept promptly up to date by using local
link mechanisms such as ARP queries.

Rbridges could perform better for IP if IP included a
mechanism such as ES-IS, that was universally implemented
by all endnodes. But Rbridges achieve almost as good a result

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

with no assumptions on IP behavior other than the classic IP
design.

If it is reasonable to only support IP endnodes, the overhead
of encapsulation and learning from data packets can be
avoided.

ACKNOWLEDGMENTS
I would like to thank Ivy Hsu, Dino Farinacci, Stewart

Bryant, John Ioannidis, Charlie Kaufman, and the anonymous
reviewer, for giving helpful feedback.

VIII.

References --

[1] Boston Globe, November 26, 2002.
[2] Callon, R., “Use of OSI IS-IS for Routing in TCP/IP and Dual

Environments”, RFC 1195, December 1990.
[3] Droms, R., “Dynamic Host Configuration Protocol”, RFC 2131, March

1997.
[4] Garcia, R., Duato, J., Silla, F., "LSOM: A Link State Protocol over

MAC Addresses for Metropolitcan Backbones Using Optical Ethernet
Switches", Proceedings of the second IEEE International Symposium on
Network Computation and Applications (NCA '03).

[5] ISO, “Protocol for Providing the OSI Connectionless-Mode Network
Service”, ISO 8473.

[6] ISO, “End System to intermediate system routeing information exchange
protocol for use in conjunction with th eprotocol for providing the
connectionless-mode network service”, ISO 9542.

[7] ISO, “Information technology -- Telecommunications and information
exchange between systems -- Intermediate system to Intermediate
system intra-domain routing information exchange protocol for use in
conjunction with the protocol for providing the connectionless-mode
Network Service (ISO 8473).

[8] Lui, K., Lee, W., Nahrstedt, K., "STAR: A Transparent Spanning Tree
Bridge Protocol with Alternate Routing", ACM Sigcomm Computer
Communications Review, July 2002.

[9] Perlman, R., “A Protocol for Distributed Computation of a Spanning
Tree in an Extended LAN”, 9th Data Communications Symposium,
Vancouver, 1985.

[10] Rodeheffer, T., Thekkath, C., and Anderson, D., "SmartBridge: A
Scalable Bridge Architecture", ACM Sigcomm 2000.

[11] Schroeder, M., Birrell, A., Burrows, M., Murray, H., Needham, R.,
Rodeheffer, T., Satterthwaite, E., Thacker, C., "Autonet: A High-Speed,
Self-Configuring Local Area Network Using Point-to-Point Links",
IEEE Journal on Selected Areas in Communication, October 1991.

[12] IEEE 802.1w-2001, IEEE Standard for Information technology---
Telecommunications and information exchange between systems---
Local and metropolitan area networks---Common specifications Part 3:
Media Access Control (MAC) Bridges---Amendment 2---Rapid
Reconfiguration [Amendment to IEEE Std 802.1D, 1998 Edition
(ISO/IEC 15802-3:1998) and IEEE Std 802.1t-2001]

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

	INFOCOM 2004
	Return to Previous View

