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Abstract— This paper describes a method of interconnecting 
links that combines the advantages of bridging and routing. The 
basic design is a replacement for a transparent bridge and makes 
no assumption about higher layer protocols. It involves creating 
an infrastructure of switches (which we call Rbridges, for 
“routing bridges”) in which packets are routed, although, as with 
bridges, layer 2 endnode location is learned through receipt of 
data packets. It avoids the disadvantages of bridges, since packets 
within the infrastructure need not be confined to a spanning tree, 
and packets are protected with a hop count and not proliferated 
while in transit, so there is no need for any artificial startup delay 
on ports to avoid temporary loops. This allows IP nodes to travel 
within a multi-link campus without changing IP addresses. The 
paper introduces further optimizations for IP, such as avoiding 
flooding ARP messages through the infrastructure, and (for IP 
nodes), allowing Rbridges to avoid learning on data packets.  

Index terms-- system design 

I.  INTRODUCTION 
Bridges can transparently connect many physical links into 

what appears to IP (or a layer 2 protocol) to be a single LAN.  
However, this transparency is bought at a price. It requires the 
topology on which traffic is forwarded to be a tree. This causes 
traffic concentration on links that were chosen for the spanning 
tree. It also causes suboptimal paths. 

In addition, bridge forwarding can be dangerous. There is 
no hop count in the header, and worse yet, bridges forward 
onto multiple ports (when the location of the destination is 
unknown), and multiple bridges might choose to forward a 
packet seen on a link. This causes exponential proliferation of 
packets. As a result, bridges need to be conservative about 
forwarding onto new links, in order to avoid temporary loops. 
The spanning tree as originally designed [9] used a timer to 
avoid temporary loops. Since then various optimizations have 
been proposed, such as making a special case of ports for 
which the neighbor is known to be an endnode (rather than 
another switch).  If the assumption is correct that the neighbor 
is an endnode, there is no danger of loops by immediately 
starting to forward on that port. Also, [12] introduces other 
optimizations to avoid the delay in some cases. 

Given the possibility of exponential proliferation during 
temporary loops, the spanning tree algorithm can become 
unstable, as reported recently in an event at a hospital in Boston 
[1]. Attempts to make it less conservative in order to forward 
more quickly are likely to increase the number of such 
incidents. In a distributed algorithm, there is no way, based on 
totally local information, for a bridge to know it is safe to start 

forwarding onto a new link. And even if such an algorithm 
were to be devised, a component such as a repeater can cause a 
loop which bridges would not be able to prevent. 

So why not simply use routing? The IP protocol (v4) is 
pretty much universal. However, it is not universal. There are 
other layer 3 protocols that are in use, and there are some 
protocols (such as IS-IS [7], or LAT) that work directly over 
layer 2. 

Even if the IP protocol were universal, however, it has a 
disadvantage. IP routes only to links. Each link is assigned an 
address prefix, and all IP nodes on that link must have an IP 
address with that prefix, and any node not on that link must 
have an IP address that does not start with that prefix. That 
means that a node that has multiple links must have multiple 
addresses, and a node that moves from one link to another must 
change its address. 

Note that for the purposes of this paper, IPv6 is sufficiently 
similar to IPv4 that throughout this paper "IP" is intended to 
mean both IPv4 and IPv6. Differences such as the use of the 
"neighbor discovery" protocol for IPv6 vs. ARP for IPv4 are 
straightforward translations of functionality. 

Another disadvantage of IP routing is that it requires 
configuration. It has improved over the years with the addition 
of protocols such as DHCP [3]. However, the routers need to 
be configured with prefixes for the links. There have been 
proposals for having routers within a campus, given a prefix, 
automatically subdivide the prefix into link-specific prefixes, 
so that each link within a “campus” would automatically have 
its own unique prefix within the shorter campus-wide prefix. 
This approach avoids configuration of the routers, but still has 
disadvantages: 

• a node that moves within the campus must change its 
address 

• a node that has attachments to multiple links must have 
multiple addresses 

• it is wasteful of IP addresses, since it is impractical to 
make sure that every link is fully populated (makes full 
use of its prefix). 

CLNP [5] is a protocol similar to IP, but unlike IP, there is 
no link-specific prefix. Instead there is the concept of “level 1 
routing” within an area. An area may contain many links. All 
nodes within the area share the same prefix. A node with 
multiple links within the area can have a single layer 3 address, 
and a node that moves within the area need not change its layer 
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3 address. CLNP could do this because all CLNP endnodes 
implemented a protocol known as ES-IS [6]. The ES-IS 
protocol has endnodes periodically announce themselves, to an 
address listened to by the routers, so that all the routers on the 
link know which endnodes are on that link, and can detect 
(based on no longer receiving ES Hello messages) when an 
endnode has gone down or moved. 

Because of the ES-IS protocol, an area can have an 
arbitrary physical topology and routers can route to endnodes 
using a shortest path algorithm. 

IP endnodes cannot be relied upon to do any such 
announcements. 

The Rbridge design presented in this paper accomplishes 
several things: 

• it coexists with standard bridges, so that a bridged 
campus can be upgraded slowly, by replacing bridges 
one at a time with Rbridges. The more Rbridges, the 
more advantages of Rbridges will be gained, such as 
more optimal use of the topology. 

• it allows interconnection of IP nodes within a campus 
with a result similar to a CLNP area, but without 
relying on IP endnodes to do anything new 

• it bridges layer 2 protocols (where “bridges” means 
transparently interconnects), while being able to 
maintain shortest paths and safe routing within the 
campus 

• as a result of working at layer 2, and making no 
assumptions about higher layers, it works for any layer 
3 protocol 

• it makes no assumptions about physical topology. Not 
only is the interswitch topology unconstrained, but 
interswitch links may be shared media, with endnodes 
residing on these links. 

• In many cases Rbridges will support dissimilar layer 2 
technologies. This paper will describe what 
mechanisms will be needed, and what cases will not 
work. 

The paper also presents variations that drop various 
assumptions, such as the functional requirement of supporting 
anything other than IP, or the assumption that endnodes might 
reside on shared media interswitch links. 

Dropping the requirement to support anything other than IP 
avoids the necessity for the Rbridge to learn station location 
from data packets, and avoids the necessity of encapsulation, 
two Rbridge requirements that present implementation 
difficulties for some switch hardware. 

Note, though, that the design optimized for IP can coexist 
with a design that handles non-IP packets, much like brouters 
could route some protocols and bridge the others. 

II. OTHER WORK 
Some approaches to high-speed interconnection not only 

require loop-free routing, but deadlock-free routing. Deadlock-

free routing not only ensures that each path is individually 
loop-free, but that paths do not interact in a way that would 
ever create deadlocks. Autonet [11] is such a system. 
Deadlock-free routing has the disadvantage that it constrains 
paths, but the clever algorithm in Autonet allows near-optimal 
paths. However, Autonet requires globally correct routes at all 
times. This is accomplished by freezing the network after a 
topology change, and discarding all data until the network is 
known to have safely converged to the new topology. 

Anther approach that requires freezing the network until it 
has converged after a topology change is SmartBridge [10]. 
SmartBridge additionally requires forwarding from each source 
to be along a spanning tree rooted at that source (and therefore 
this design does not allow load splitting). 

The Rbridge concept does not need to be careful to avoid 
temporary inconsistencies while the topology is changing (due, 
among other things, to including a hop count in the interswitch 
header). This avoids the necessity to throw away data during 
topology transition times, and allows faster convergence, since 
during a topology change some routes might still be correct, 
and there is no need to artificially throw away packets for those 
routes. And the network will converge more quickly than 
knowledge that the network has converged, so even routes 
affected by the topology change will start forwarding correctly 
more quickly in the Rbridge scheme. 

An approach similar to the Rbridge design, but with stricter 
topological assumptions (no shared medium links between 
switches) is in [4]. It specifically deals with layer 2 forwarding, 
and makes no optimizations for IP. 

III. BASIC RBRIDGE DESIGN 
The basic design of an Rbridge consists of several parts: 

• Within a campus, Rbridges execute a link state 
protocol such as IS-IS, so that all Rbridges know a path 
to each other Rbridge. IS-IS is a particularly good 
choice because of its flexible encoding that allows 
including new information (such as layer 2 addresses 
of reachable endnodes). 

• On each link, a single Rbridge is elected DR 
(Designated Rbridge). That is the only Rbridge on that 
link that is allowed to learn the membership of 
endnodes on that link, and is the only Rbridge allowed 
to forward traffic onto that link that is destined for that 
link. 

• The DR, like a bridge, learns which endnodes are 
located on its link by observing the source address of 
packets that have originated on that link. 

• The Rbridge distributes the addresses of endnodes on 
its link in the link state protocol. This enables all 
Rbridges to know which Rbridge is the appropriate 
destination Rbridge for each endnode. 

• The egress Rbridge from a link (usually the DR, but an 
optimization would allow another Rbridge to forward a 
packet off the link) encapsulates the packet with an 
additional header that contains, at the minimum, a hop 
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count, and preferably also a destination Rbridge 
identifier. 

• Packets in transit are distinguished from originating 
packets, since they contain the encapsulation header. 
Therefore, there is no confusion between packets 
originating on a link and packets transiting that link; 
the DR will know not to assume that the source of a 
transit packet does not reside on the link from which 
the packet was received. 

• Rbridges additionally calculate a spanning tree. This is 
for the purpose of delivering layer 2 multicast packets, 
and packets to unknown destinations. There is no need 
to implement an additional protocol in order to 
calculate a spanning tree, given that the Rbridges have 
a link state database. 

• When packets are to be sent through the spanning tree, 
the encapsulation header specifies a value such as 
destination Rbridge ID=0. The packet is forwarded 
through the spanning tree and each DR (in addition to 
forwarding it through the spanning tree), removes the 
encapsulation header in order to forward the packet 
onto the DR's link. 

 
This design can be thought of as performing the 

functionality of a bridge to endnodes, i.e., transparently 
interconnecting links, but it avoids the disadvantages of 
bridges. Since the transit packets are routed, with a header that 
contains a hop count, it is safe to have temporary loops. 
Packets with a specified destination Rbridge will not proliferate 
(as bridged packets would) during a temporary loop, and they 
will quickly be discarded due to the hop count. The hop count 
can even be set to be exact, unlike a hop count written into the 
header by an endnode, since the Rbridge can calculate the 
number of hops necessary to reach the destination. So, ignoring 
for the moment packets that must be sent through the spanning 
tree, Rbridge routing enjoys the following advantages over 
802-style bridging: 

• packets travel via an optimal path 

• during temporary loops, packets do not proliferate 

• packets have a hop count 

• temporary loops are not a problem, so routing changes 
can be made instantaneously based on local 
information, safely. 

A. The encapsulation header 
The goals of the encapsulation header are: 

• Allow Rbridges to differentiate packets originated by 
an endnode from transit packets 

• Include a hop count 

• Be compatible with bridges on the path between 
Rbridges  

 If we want bridges to coexist with Rbridges, so that a 
bridge might be on the path between two Rbridges, the packet 

must still contain what looks like an ordinary layer 2 header, so 
that bridges will be able to forward it. 

The way to accomplish this is to use something in the outer 
layer 2 header that can be recognized by Rbridges as an 
encapsulated packet. The most straightforward would be a new 
protocol type (or SAP), that would mean "Rbridged 
encapsulated packet", which we'll call the Rbtype protocol type 
(or SAP). An Rbridged transit packet consists of an otherwise 
normal layer 2 header with protocol type Rbtype, followed by 
the encapsulation information including the hop count, 
followed by the original packet as transmitted by the source. 
When forwarding to the destination, the encapsulation header is 
removed, so that the goal of transparency to endnodes is 
accomplished. The destination will see the packet as 
transmitted by the source. 

The layer 2 source and destination in the outer header 
should be the transmitting and receiving Rbridge. It is safe for 
bridges to learn layer 2 addresses within the bridged spanning 
tree terminated by Rbridges, since that mini-LAN is a normal 
bridged topology in which packets travel on a spanning tree. It 
would not be safe for the layer 2 source address to be the 
original source endnode's layer 2 address, because packets are 
not routed along a spanning tree throughout the campus, and 
therefore are injected into the mini-LAN from different 
directions. Therefore, bridges in a mini-LAN would see 
packets from a MAC address appear from different directions, 
if a MAC address outside the mini-LAN appears as a source in 
the outer header. This will confuse bridges about that MAC's 
location, and they may filter packets destined for that address.  

The addresses in the outer header must be MAC addresses 
local to the mini-LAN, to avoid this problem. This outer header 
is rewritten on an Rbridge-hop by Rbridge-hop basis. 

After the outer header is additional information of use to 
Rbridges. This includes the hop count, which would be 
decremented on each Rbridge hop. And although theoretically 
it might be avoided, it is desirable to also include the 
destination Rbridge address, or in the case of the destination's 
location being unknown, an indicator (such as destination 
Rbridge address specified as "0") that the packet is to be sent 
through a spanning tree. 

In theory it is not necessary to specify the destination 
Rbridge, since all Rbridges would know how to forward to the 
known layer 2 destinations within the campus. However, it is 
safer to include it, to avoid loops in transition cases where 
some Rbridges know the destination Rbridge and others don't, 
and think the packet must be flooded, or some Rbridges 
disagree about which destination Rbridge owns the destination. 
This would not be too bad, though, because there is the hop 
count. 

Another possibility for avoiding inclusion of the destination 
Rbridge is to include enough information to distinguish flooded 
packets from packets to presumed known destinations. This 
could be done by using a second reserved protocol type, say 
Rbflood. 

The original packet is preserved after the encapsulation 
header so that the packet can be received transparently by the 
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destination, without evidence of it having been handled by 
Rbridges. 

B. Temporary Loops 
1) Caused by repeater or bridge 

 
If a component such as a repeater or bridge came up, it is 

possible that two links become merged. This could result in 
there temporarily being two DRs on a link. A DR will not be 
able to distinguish a packet from  remote source S that has been 
decapsulated and injected by the other DR, from a packet 
originated by S. This will cause the DRs' learning to be faulty, 
and might introduce loops that are not protected by the hop 
count (because the hop count is removed when a DR 
decapsulates a packet onto the link). 

This is likely to be a rare event, and more quickly detected 
and corrected because it is link-local. It will take less time for 
link-specific knowledge to converge than global knowledge, 
which is required for the bridge spanning tree algorithm to 
converge. 

2) Flooded Packets 
 

Some packets need to be flooded through the Rbridged 
campus along a spanning tree. Packets that need to be flooded 
are packets for destinations whose location is unknown, or 
packets with layer 2 multicast addresses. Just as unicast routing 
can have temporary loops, since a distributed algorithm cannot 
have all nodes instantaneously switch to a new topology, the 
spanning tree might temporarily have loops. With unicast 
routing loops, packets will not proliferate. With a spanning tree 
loop, packets will be duplicated. 

However, the Rbridge spanning tree is far less dangerous 
than the 802-bridge spanning tree, because the encapsulation 
header contains a hop count. The Rbridge that injects the 
spanning tree packet into the Rbridge cloud can calculate the 
minimal hop count necessary for the packet. Additionally, for 
each port, the Rbridge can calculate a different hop count (in 
case leaves on one port are further away than leaves on another 
port). 

Because of the hop count, spanning tree loops will, in 
practice, be unlikely to cause much harm. However, Rbridges 
can add additional conservative measures to prevent even the 
limited proliferation. As with regular bridges, they can impose 
a timer before starting to forward flooded packets onto new 
links. And given that they have a link state database, they can 
even calculate whether forwarding flooded packets onto a new 
link might cause a temporary loop. 

Note that this section is only concerned with messages that 
must be flooded. Messages that are directed to a known 
destination location will not have any danger of being 
proliferated during temporary loops. 

So in all cases Rbridges are far safer than regular bridges. 
They are not, however, as safe as CLNP level 1 routers, since 
CLNP level 1 routers would never need to flood packets to 
unknown destinations. But Rbridges work without requiring 
the ES-IS protocol, which only exists for CLNP. 

 

IV. RBRIDGING IP 
 

The basic design of the Rbridge, presented in section 1, can 
bridge layer 2 packets, but using optimal paths within the 
campus. If this is all they did, it would support IP. The campus 
would appear to IP to be a single LAN. However, there is one 
case that would not work. If the Rbridge only used layer 2 
addresses, it would fail to interconnect two IP nodes within the 
campus if they resided on dissimilar layer 2 links, for instance 
ones with dissimilar addresses. 

A. The Dissimilar Layer 2 Address Issue 
Suppose source IP node S resides on a link with a different 

layer 2 address structure than destination IP node D. Since the 
Rbridged campus appears to be a single IP subnet, S will 
assume D is a neighbor, and issue an ARP. Unfortunately, the 
layer 2 address in D's reply will not be understandable to S, and 
not be expressible in the layer 2 header when S attempts to 
forward to B. 

To support this case (S and D are IP nodes residing on links 
with incompatible layer 2 addresses), Rbridges reply to ARP 
queries, if necessary, with the layer 2 address of an Rbridge 
(see next section). 

 
B. Handling ARPs 

 
Let's say that source IP node S is on a link with DR R1, and 

target node D is on a link with DR R2. The goal is that when S 
does an ARP request for D, if the Rbridges already have 
learned about D, that R1 can reply with an ARP request to S, 
informing S of D's layer 2 address, without needing to flood the 
ARP request to other links. 

We'd also like to support the case where S and D have 
incompatible layer 2 addresses. In this case R1 will reply to the 
ARP request with R1's layer 2 address. 

How do the Rbridges learn the ARP information? 

Let's assume that S wishes to speak to D. S issues an ARP 
request. S's DR, R1, replaces the source S in the ARP query 
with its own address, and remembers (S,D) so that, when it 
receives the ARP reply from D, it sends an ARP reply to S. 

Each Rbridge R2, in addition to forwarding the flooded 
ARP request through the spanning tree, sends an ARP query on 
its own LAN, with itself (R2) as source, remembering that if it 
receives a reply from D it must send an ARP reply to R1. 

When R2 (the DR on D's link) receives an ARP reply ("my 
layer 2 address is d") from D, R2 sends an ARP reply to R1, 
and also reports ownership of (D,d) in its link state information. 
The other Rbridges will now know the location of IP 
destination D, and the associated layer 2 address d. 

To avoid a denial of service attack by having S issue too 
many ARP queries (which result in flooded packets and a lot of 
processing by Rbridges), the R1 will remember recent ARP 
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queries, and refuse to issue another ARP query for D for some 
time. 

If a second node, S2, on R1's link, issues an ARP query for 
D between the time S issued its query and D's reply is returned, 
R1 does not flood an ARP query. Instead, R1 remembers that 
an ARP reply from D (triggered by S's ARP query) should be 
sent to both S and S2. 

In the case where D's layer 2 address is incompatible with 
the querying node S, S's DR (R1) replies to the ARP with R1's 
layer 2 address. 

This design has the following properties: 

• ARP queries will not need to be flooded once the 
Rbridges learn the location of the target IP node. 

• IP will work even if the source and destination within 
the campus reside on links with incompatible layer 2 
address types. 

So, when an IP source emits an ARP, it will either be told 
the true layer 2 address of the destination, or the layer 2 address 
of its own Rbridge, depending on whether the destination's 
layer 2 address is compatible with the source's layer 2 address. 

It might be conceptually simpler to have the Rbridge 
always respond to an ARP query with its own layer 2 address. 
The reason for using the destination's layer 2 address when 
possible (when the layer 2 address is compatible) is so that the 
source IP node's ARP cache will not need to change when the 
local Rbridge goes down and a different DR is elected. 

An alternative design could use a logical layer 2 address for 
the Rbridge, say X. In this alternate design all IP endnode ARP 
caches would indicate X as the layer 2 address of all 
destinations. 

There might be true bridges mixed in with the Rbridges 
(and transparent to the Rbridges, just as bridges are transparent 
to routers). Therefore, X must not be used as a source address, 
so that its location will not be learned by bridges. 

The only disadvantage of this approach is that all packets to 
X would need to be flooded (within the very small spanning 
tree created by true bridges on the link between Rbridges). 

Using the destination's true layer 2 address, when possible, 
avoids this slight suboptimality. 

In the case of an endnode directly connected to an Rbridge 
port with a point-to-point links, none of these disadvantages 
apply, and there is no disadvantage to having the Rbridge 
always respond to ARP requests from S with the Rbridge's 
layer 2 address. 

One other issue is a timing issue. It is possible that S will 
receive the ARP reply before R2's link state information has 
propagated. This case would be handled by a pure Rbridge (one 
that forwards based solely on layer 2 addresses) like a packet to 
an unknown destination; the packet will be flooded. For 
Rbridges forwarding IP packets based on the IP header (see 
section VI), this would cause the Rbridge that does not know 
the (IP, layer 2) binding to issue an ARP. It could store the data 

packet until the ARP reply was received, or flood the packet, or 
drop the packet. 

 
C. Prompt Dead-Node Detection for IP 

 
Rbridges can take advantage of the properties of IP in order 

to detect in a prompt manner when an IP node has moved or 
has died. With layer 2, there is no protocol in which a node is 
required to answer. However, with IP, if the DR knows that 
(D,d) resides on its LAN, the DR can periodically issue ARP 
queries for D, to reassure itself that D still resides on its LAN. 

 
D. Optimizing the path 

 
If the DR is always the egress and ingress point for the link, 

it is possible for packets to be two hops suboptimal. Given a 
particular source and destination, the ingress DR and the egress 
DR might each be one-hop suboptimal. 

This suboptimality would only occur on shared media. 
Most topologies today really consist of switches and point-to-
point links. If all the switches were Rbridges, and all links pt-
to-pt, then there would be no such suboptimality. 

However, if there are shared links (or switched links with 
the switches being bridges, so the link would appear to the 
Rbridge as if it were a shared link), there can be up to a 2-hop 
suboptimality. 

The first hop's suboptimality can be avoided by having the 
Rbridges on the link implement a careful algorithm in which 
they calculate, for each destination, which of them is the 
optimal Rbridge for handling the packet. This can be done by 
calculating a Dijkstra tree with the link as the Root, and with a 
deterministic tie-breaker. 

The suboptimality at the destination cannot be avoided, 
since it would be dangerous for any Rbridge other than the DR 
to inject a decapsulated packet onto the link.  The DR would 
not be able to distinguish that from a packet that originated on 
that link, and the DR would falsely assume the source address 
in the packet resided on that link. 

There is another form of route suboptimality. In IP, there 
might be several routers on the link, and endnodes on the link 
would choose a router, essentially at random, for forwarding 
packets to destinations that are not on that IP subnet (that do 
not share the same campus-wide prefix as the source IP node). 
IP already has the mechanism, if a router forwards a packet 
onto the same link from which it was received, for the router to 
send a Redirect message. This will avoid many cases of 
suboptimality. 

 
E. What an Rbridge cannot do 

 
There are some cases that an Rbridge cannot support: 

• If there are links with incompatible layer 2 address 
formats, then an Rbridge would not be able to 
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interconnect nodes on those two links unless those 
nodes were speaking IP. 

• If the links have different packet sizes, an Rbridge 
would not be able to forward packets that are too large. 

The first issue (incompatible layer 2 address formats) could 
in theory be supported if the addresses could be translated. Any 
two technologies that can be bridged can be Rbridged. 

Rbridges could support interconnection within the campus 
of disparate layer 2 technologies provided that the source S and 
the endnode D resided on compatible link types, because the 
Rbridge encapsulates the packet and can send it to the 
destination Rbridge. Fragmentation and reassembly could, in 
theory, be supported by the encapsulation header. 

 
F. Traffic Engineering 

 
Rbridges are really routers, and therefore can do any sort of 

routing that routers do. In some networks, it is desirable to use 
MPLS in order to create special routing, for instance, to allow 
certain customers to have paths that have certain service 
guarantees. This is not incompatible with the Rbridge concept. 

V. LESS GENERAL RBRIDGES 
In this section we drop some of the generality of the 

Rbridge, and see what advantages it can give. 

A. Transit links switch-switch only 
If we assume that endnodes only exist on leaf links, and 

switches are aware of which ports are endnode ports, then there 
is no necessity to restrict endnode location learning. Each 
Rbridge is allowed to learn station locations for each of its 
ports on which an endnode might reside. We avoid the one-hop 
suboptimality trivially since there is only one Rbridge on each 
endnode link. 

If we are really sure that an interswitch link will never be 
mistaken for an endnode link, then encapsulation would not be 
required for Rbridge learning. However, the encapsulation 
header includes a hop count, making forwarding during 
temporary loops safer. (Note that even without the hop count, 
Rbridge forwarding of packets for known destinations is safer 
than bridge forwarding, since Rbridges, like routers, will 
forward only in one direction.) However, for Rbridge flooded 
packets, without the encapsulation header, Rbridge forwarding 
would be as dangerous as bridge flooding. 

VI. IP-SPECIALIZED RBRIDGE 
Two requirements of the Rbridge design presented in the 

rest of the paper are implementation challenges for some 
switch hardware. These requirements are: 

• The necessity to learn when forwarding data packets 

• The necessity to encapsulate and decapsulate packets 

These requirements can be avoided by dropping the goal of 
supporting anything other than IP. In this section we will 
assume all packets are IP packets. 

A. Avoiding Encapsulation 
There are three reasons for the encapsulation header: to 

have a hop count for safety, to distinguish transit packets from 
endnode-originated packets, and to distinguish packets to be 
flooded from those to known destinations. 

Note that we will assume that IP packets also contain a 
layer 2 header. What we are avoiding is the use of an 
additional layer 2 header. 

1) Hop Count 
 

We will not need the encapsulation header for carrying a 
hop count, since the IP header contains a hop count. Rbridges 
can decrement the hop count in the IP header. 

Some ISP customers consider an apparently small hop 
count across an ISP as superior service, and having Rbridges 
decrement the IP header's hop count would mean that the 
customers would see the Rbridge hops as IP hops. 

One could argue (and be quite correct), that this is a 
completely false assumption on the part of the customer. An 
Rbridge hop (or a bridged hop) is no better than a router hop. 
Better service should be measured by metrics such as delay, 
bandwidth, and reliability, not by perceived numbers of hops. 
However, it is often politic to give the customers what they 
want rather than argue with them. So having Rbridges 
decrement the IP header hop count might be perceived as a 
disadvantage with some customers. 

2) Transit Packets 
 

Since we are assuming IP packets, it is not necessary for the 
original layer 2 header to preserved. Therefore, any information 
necessary for Rbridge forwarding can be carried in the layer 2 
header. 

To distinguish transit packets, we can replace the protocol 
type (which would indicate IP) by a protocol type indicating 
that it is an Rbridged transit IP packet. 

The layer 2 source and destination should be replaced, at 
each hop, by the transmitting and receiving Rbridge on that 
Rbridge hop. 

Although this might appear to be as much work as 
encapsulation, this is what routers do (rewrite the layer 2 
header on each hop). But it avoids the encapsulation issues of 
requiring an additional layer 2 header, which might violate the 
maximum packet size. 

At the final hop, the final Rbridge replaces the protocol 
type to indicate to the destination that it is an IP packet. 

3) Flooded packets 
 

As before, flooded packets can be distinguished by using a 
different reserved protocol type. 

B. Avoiding Data Packet Learning 
Some switch hardware is optimized for fast forwarding of 

data packets, and it is not possible for it to do anything other 
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than forward. In particular, it cannot learn source addresses 
from data packets. 

This form of switch is, of course, only used as a router, 
since bridges must learn based on data packets. But this 
requirement of bridges is because it is not possible to assume 
any sort of protocol by the endnodes. 

If, however, we assume that all endnodes are only issuing 
IP packets, or associated control packets (such as ARP 
packets), then we can design an Rbridge that does need to learn 
from data packets. 

If Rbridges will not learn IP destinations based on data 
packets, then they must learn them through ARP replies or link 
state information. 

1) D unknown by endnodes and Rbridges 
 

The description of how ARP requests and replies are 
handled is in section IV.B. The ARP requests and replies can 
be handled by the control plane. 

Let's assume that destination endnode D is unknown. 
Source S wishes to speak to D. S issues an ARP request. The 
ARP request is not a data packet, so it can be dealt with in the 
slow path (the control plane). The first Rbridge, R1, replaces 
the protocol type with a protocol type indicating "flooded 
ARP", replaces the source S with its own address, and 
remembers that, when it receives the reply from D, it must send 
an ARP reply to S. 

Flooded ARPs can also be handled by the control plane 
because they can be recognized based on the protocol type. 
Each Rbridge R2, in addition to forwarding the flooded ARP 
request through the spanning tree, sends an ARP query on its 
own LAN, with itself (R2) as source, remembering that if it 
receives a reply from D it must send an ARP reply to R1. 

When an ARP reply is received by D, D will send the ARP 
reply to R2. Then R2 sends an ARP reply to R1, and also 
reports ownership of IP destination D, and associated layer 2 
address, in its link state information. The other Rbridges will 
now quickly learn the location of IP destination D, and the 
associated layer 2 address (so they can respond locally to 
ARPs). 

2) D known by Rbridges, not by S 
 

In this case, when source endnode S wants to talk to D, S 
will issue an ARP query. The first Rbridge, R1, has learned, 
based on link state information issued by R2, where D resides, 
and also what its layer 2 address is. R2 then does not forward 
the ARP reply, and instead answers with an ARP reply on 
behalf of D. 

3) D known by S and not by Rbridges 
 

Endnode S might know D's layer 2 address, and yet D 
might be unknown to the Rbridges. This might occur because 
S's ARP cache might have a longer retention time than Rbridge 
caches. Or maybe D's Rbridge has been restarted and D is no 
longer included in its link state information. 

So in this case an Rbridge will see a packet for an unknown 
IP destination address (but within the campus Rbridged prefix). 
Most likely this will be the first Rbridge. However, in a 
transition case where link state information has partially 
propagated, it might be a transit Rbridge. But the Rbridge will 
behave the same way in either case. 

The Rbridge will drop the unknown IP destination packet, 
and instead issue an ARP query, with itself as source. This will 
cause a flooded ARP query, with each Rbridge issuing an ARP 
query on its own link. The Rbridge on D's link will receive an 
ARP reply, and inform the other Rbridges, through the link 
state flooding.  

To avoid causing a lot of flooded ARP messages, Rbridges 
should remember recent unknown IP destinations that have 
caused an ARP flood, and not issue another one for some 
amount of time. 

  

 

 
VII. SUMMARY 

 
The Rbridge design achieves the transparency of bridging 

without the disadvantages. It achieves the ability to create a 
campus that looks like a single link. 

The campus can include links with different layer 2 
technologies. An Rbridge would not be able to allow two nodes 
to speak at layer 2, if they reside on incompatible link types; 
however, the Rbridge would enable those nodes to 
communicate if the nodes were speaking IP. 

Rbridges have great advantages over bridging. They allow 
optimal paths and path splitting. They need not be conservative 
about creating temporary loops because packets do not 
proliferate, and there is a hop count. The hop count with 
Rbridges is set by the source Rbridge, which is armed with link 
state information, so that the source Rbridge can calculate the 
minimum necessary hop count. This means that during 
temporary loops unicast packets (packets to known 
destinations) will be removed more quickly than packets in a 
traditional layer 3 network. 

For flooded packets (layer 2 multicast or packets to 
unknown destinations), Rbridges, like regular bridges, may 
duplicate packets during temporary loops. However, with 
Rbridges there is a hop count, the hop count can be set to be the 
minimum necessary, and additionally the Rbridge can use 
global information to make conservative temporary loop-
avoidance decisions, so its loop-avoidance behavior will be 
more timely and accurate than anything a true bridge could do. 

For IP packets, the Rbridge has the additional advantage 
that ARP packets need not be flooded, and instead can usually 
be answered by the source Rbridge. Additionally, the location 
of IP endnodes can be kept promptly up to date by using local 
link mechanisms such as ARP queries. 

Rbridges could perform better for IP if IP included a 
mechanism such as ES-IS, that was universally implemented 
by all endnodes. But Rbridges achieve almost as good a result 
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with no assumptions on IP behavior other than the classic IP 
design. 

If it is reasonable to only support IP endnodes, the overhead 
of encapsulation and learning from data packets can be 
avoided. 
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