Rbridges: Transparent Routing

Radia Perlman
radia.perlman@sun.com



Problems with Bridges

* Routes are not optimal (spanning tree)
— STA cuts off redundant paths

— If A and B are on opposite side of path, they
have to take long detour path

o Temporary loops really dangerous
— no hop count in header
— proliferation of copies during loops
— S0, should be conservative In transition



Path from ato ¢

2,1,14



Why loops are a disaster

* No hop count
« Exponential proliferation

ST T

Bl B2 B3

B I N



Why bridges are slow to start
forwarding

Temporary loops might cause meltdown

Can’t (except In certain special cases, like a
port to an endnode) know If turning on a
link might cause temporary loop

Simple solution: walt before turning on link,
so other bridges can turn off links first

People want instant failover (but they don’t
want meltdowns)



Bridge meltdowns

* They do occur (a Boston hospital)

 Lack of receipt of spanning tree msgs tells
bridge to turn on link

e So If too much traffic causes spanning tree
messages to get lost...
— loops
— exponential proliferation of looping packets



Why are there still bridges?

« \WWhy not just use routers?
— Bridges plug-and-play
— Endnode addresses can be per-campus
* |P routes to links, not endnodes
— So IP addresses are per-link
— Need to configure routers
— Need to change endnode address if change links



True “level 1” routing

 CLNP addresses had two parts
— “area” (14 bytes...)
— node (6 bytes)
e An area was a whole multi-link campus

e Two levels of routing
— level 1: routes to exact node ID within area
— level 2: longest matching prefix of “area”



CLNP areas

one prefix



CLNP level 1 routing

e Depended on protocol “ES-1S”
— endnodes periodically multicast presence to rtrs
— (also, rtrs periodically multicast to endnodes)

e Ritrs tell each other, within area, location of
all endnodes In area

 |S-1S originally designed for CLNP. “Level
2” was to longest prefix. “Level 17 was to
exact match of bottom 6 bytes.



“Level 1 routing” with IP

IP has never had true level 1 routing
Each link has a prefix

Multilink node has two addresses
Move to new link requires new address

Bridging Is used to create a campus In
which all nodes share the same prefix

But bridging isn’t as good as routing



What we’d like, part 1: replace
bridging with Rbridging

Keep transparency to endnodes

Keep plug-and-play

nave best paths

eliminate problems with temporary loops
— have a hop count
— don’t exponentially proliferate packets

then can converge optimistically (like rtrs)




What we’d like, part 2: true

“level 1 routing” for IP
allow plug-and-play campus sharing a
prefix
allow optimal routing

don’t require any endnode changes (e.g.,
Implement ES-1S)

work for IPv4 and IPv6



Rbridges

Compatible with today’s bridges and routers
Like routers, terminate bridged LAN

Like bridges, glue LANSs together to create
one IP subnet (or for other protocols, a
broadcast domain)

Like routers, optimal paths, fast
convergence, no meltdowns

Like bridges, plug-and-play




Rbridging layer 2

Link state protocol among Rbridges (so
know how to route to other Rbridges)

Like bridges, learn location of endnodes
from receiving data traffic

But since traffic on optimal paths, need to
distinguish originating traffic from transit

So encapsulate packet to destination
Rbridge



Rbridging




Encapsulation Header

S=Xmitting Rbridge
D=Rcving Rbridge
pt="transit”

hop count

original pkt (including L2 hdr)

e Quter L2 hdr must not confuse bridges
e So it’s just like it would be if the Rbridges were routers
» Need special layer 2 destination address
o for unknown or multicast layer 2 destinations
e can be L2 multicast, or any L2 address provided it
never gets used as a source address




Rbridges and Bridges

Seems like:

R2

Actually can be: bridged LAN

D RT



Endnode Learning

e On shared link, only one bridge (DR) can
learn and decapsulate onto link

— otherwise, a “naked” packet will look like the
source Is on that link

— have election to choose which Rbridge

* When DR sees naked pkt from S,
announces S In its link state info to other
Rbridges



Pkt Forwarding

o |If D known: encapsulate and forward
towards D

* Else, send to “destination=flood”, meaning
send on spanning tree

— calculated from LS info, not sep protocol
— each DR decapsulates



Rbridging IP

« Rbridging at layer 2 will do it

e Optimization: locally answer ARPS
— learn (layer 3, layer 2)
— pass that in link state info

« Another optimization for IP: shorter
endnode cache timer (since can ping)



Alternative for IP

Some router hardware doesn’t like to learn
on data packets (“fast path”)

Encapsulation not too desirable
For IP packets, we can avoid both the above

Forward like IP, using IP hdr
— learn from ARP replies

— decrement hop count in IP hdr
— L2 hdr: Rbridge to Rbridge



Avolding encapsulation for IP

e On-campus IP destination

— forward based on IP header

— learn from ARP replies

— If destination unknown, flood ARP query
o Off-campus IP destination

— forward based on layer 2 destination



Conclusions

o Looks to routers like a bridge
— Invisible, plug-and-play
o Looks to bridges like routers
— terminates spanning tree, broadcast domain



Conclusions, cont’d

* Much better replacement for bridging
— optimal paths
— still plug and play and transparent
— fast convergence
— no meltdowns

* ForIP
— allows plug-and-play single-prefix campus



	Rbridges: Transparent Routing
	Problems with Bridges
	Path from a to c
	Why loops are a disaster
	Why bridges are slow to start forwarding
	Bridge meltdowns
	Why are there still bridges?
	True “level 1” routing
	CLNP areas
	CLNP level 1 routing
	“Level 1 routing” with IP
	What we’d like, part 1: replace bridging with Rbridging
	What we’d like, part 2: true “level 1 routing” for IP
	Rbridges
	Rbridging layer 2
	Rbridging
	Encapsulation Header
	Rbridges and Bridges
	Endnode Learning
	Pkt Forwarding
	Rbridging IP
	Alternative for IP
	Avoiding encapsulation for IP
	Conclusions
	Conclusions, cont’d

