
Rbridges: Transparent Routing

Radia Perlman
radia.perlman@sun.com



Problems with Bridges

• Routes are not optimal (spanning tree)
– STA cuts off redundant paths
– If A and B are on opposite side of path, they 

have to take long detour path
• Temporary loops really dangerous

– no hop count in header
– proliferation of copies during loops
– So, should be conservative in transition



Path from a to c

93

4

11
7

10

14

2 5

6

2,0,2

2,0,2

2,1,14
2,1,5

2,2,7

2,1,6

2,2,4

2,2,4

2,3,3

2,3,3

a

c



Why loops are a disaster
• No hop count
• Exponential proliferation

B1 B2 B3

4



Why bridges are slow to start 
forwarding

• Temporary loops might cause meltdown
• Can’t (except in certain special cases, like a 

port to an endnode) know if turning on a 
link might cause temporary loop

• Simple solution: wait before turning on link, 
so other bridges can turn off links first

• People want instant failover (but they don’t 
want meltdowns)



Bridge meltdowns

• They do occur (a Boston hospital)
• Lack of receipt of spanning tree msgs tells 

bridge to turn on link
• So if too much traffic causes spanning tree 

messages to get lost…
– loops
– exponential proliferation of looping packets



Why are there still bridges?

• Why not just use routers?
– Bridges plug-and-play
– Endnode addresses can be per-campus

• IP routes to links, not endnodes
– So IP addresses are per-link
– Need to configure routers
– Need to change endnode address if change links



True “level 1” routing

• CLNP addresses had two parts
– “area” (14 bytes…)
– node (6 bytes)

• An area was a whole multi-link campus
• Two levels of routing

– level 1: routes to exact node ID within area
– level 2: longest matching prefix of “area”



CLNP areas

one prefix



CLNP level 1 routing

• Depended on protocol “ES-IS”
– endnodes periodically multicast presence to rtrs
– (also, rtrs periodically multicast to endnodes)

• Rtrs tell each other, within area, location of 
all endnodes in area

• IS-IS originally designed for CLNP. “Level 
2” was to longest prefix. “Level 1” was to 
exact match of bottom 6 bytes.



“Level 1 routing” with IP

• IP has never had true level 1 routing
• Each link has a prefix
• Multilink node has two addresses
• Move to new link requires new address
• Bridging is used to create a campus in 

which all nodes share the same prefix
• But bridging isn’t as good as routing



What we’d like, part 1: replace 
bridging with Rbridging

• keep transparency to endnodes
• keep plug-and-play
• have best paths
• eliminate problems with temporary loops

– have a hop count
– don’t exponentially proliferate packets

• then can converge optimistically (like rtrs)



What we’d like, part 2: true 
“level 1 routing” for IP

• allow plug-and-play campus sharing a 
prefix

• allow optimal routing
• don’t require any endnode changes (e.g., 

implement ES-IS)
• work for IPv4 and IPv6



Rbridges

• Compatible with today’s bridges and routers
• Like routers, terminate bridged LAN
• Like bridges, glue LANs together to create 

one IP subnet (or for other protocols, a 
broadcast domain)

• Like routers, optimal paths, fast 
convergence, no meltdowns

• Like bridges, plug-and-play



Rbridging layer 2

• Link state protocol among Rbridges (so 
know how to route to other Rbridges)

• Like bridges, learn location of endnodes 
from receiving data traffic

• But since traffic on optimal paths, need to 
distinguish originating traffic from transit

• So encapsulate packet to destination 
Rbridge



Rbridging

R1

R2

R3

R4

R6

R7

R5

a

c



Encapsulation Header

S=Xmitting Rbridge
D=Rcving Rbridge
pt=“transit”

hop count original pkt (including L2 hdr)

• Outer L2 hdr must not confuse bridges
• So it’s just like it would be if the Rbridges were routers
• Need special layer 2 destination address

• for unknown or multicast layer 2 destinations
• can be L2 multicast, or any L2 address provided it
never gets used as a source address



Rbridges and Bridges

R4 R7R2
Seems like:

R4 R7

R2

bridged LANActually can be:



Endnode Learning

• On shared link, only one bridge (DR) can 
learn and decapsulate onto link
– otherwise, a “naked” packet will look like the 

source is on that link
– have election to choose which Rbridge

• When DR sees naked pkt from S, 
announces S in its link state info to other 
Rbridges



Pkt Forwarding

• If D known: encapsulate and forward 
towards D

• Else, send to “destination=flood”, meaning 
send on spanning tree
– calculated from LS info, not sep protocol
– each DR decapsulates



Rbridging IP

• Rbridging at layer 2 will do it
• Optimization: locally answer ARPs

– learn (layer 3, layer 2)
– pass that in link state info

• Another optimization for IP: shorter 
endnode cache timer (since can ping)



Alternative for IP

• Some router hardware doesn’t like to learn 
on data packets (“fast path”)

• Encapsulation not too desirable
• For IP packets, we can avoid both the above
• Forward like IP, using IP hdr

– learn from ARP replies
– decrement hop count in IP hdr
– L2 hdr: Rbridge to Rbridge



Avoiding encapsulation for IP

• On-campus IP destination
– forward based on IP header
– learn from ARP replies
– if destination unknown, flood ARP query

• Off-campus IP destination
– forward based on layer 2 destination



Conclusions

• Looks to routers like a bridge
– invisible, plug-and-play

• Looks to bridges like routers
– terminates spanning tree, broadcast domain



Conclusions, cont’d

• Much better replacement for bridging
– optimal paths
– still plug and play and transparent
– fast convergence
– no meltdowns

• For IP
– allows plug-and-play single-prefix campus


	Rbridges: Transparent Routing
	Problems with Bridges
	Path from a to c
	Why loops are a disaster
	Why bridges are slow to start forwarding
	Bridge meltdowns
	Why are there still bridges?
	True “level 1” routing
	CLNP areas
	CLNP level 1 routing
	“Level 1 routing” with IP
	What we’d like, part 1: replace bridging with Rbridging
	What we’d like, part 2: true “level 1 routing” for IP
	Rbridges
	Rbridging layer 2
	Rbridging
	Encapsulation Header
	Rbridges and Bridges
	Endnode Learning
	Pkt Forwarding
	Rbridging IP
	Alternative for IP
	Avoiding encapsulation for IP
	Conclusions
	Conclusions, cont’d

